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Theory of the dielectric susceptibility of nonpolar biaxial liquid crystals
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A statistical theory of the dielectric susceptibility of nonpolar liquid crystals, whose constituent molecules
are biaxial, is proposed. The ordering is described by means of the mean field theory, in which a set of basic
functions is introduced. The dielectric susceptibilities are derived using a generalized Clausius-Mossotti ap-
proach. The theory was used to calculate the temperature and the density dependence of the order parameters
and of the susceptibilities. On increasing the density, an ordering reversal of the corresponding susceptibilities

is obtained.
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[. INTRODUCTION macroscopic field4]. In the case of liquid crystals, this situ-

In liquid al tic oh th lecul it ation is more complicated because of the various anisotro-
n fiquia-crystai nematic phases (€ molecule gravity CeNyiag ang the incomplete orientational order.

tgrs do not have long-range order, but there is a partial direc- \ne \would like to propose a dielectric theory for the
tional order of the moleculgd]. They tend to be parallel to  phases that consist of rigid nonpolar biaxial molecules. De-
selected axes, labeled by unit vectdrsM, andN. In the  spite the dearth of experimental realizations of biaxial liquid-

try of the phase i©..,), whereas in the biaxial nematic phase 'etically. The ordering of these phases has been studied by
all three axes are involveithe symmetry of the phase is then M€ans of mean field theofy—9], counting methodp10, 11,
D). the Landau—de Gennes thedn2,13, bifurcation analysis

A static electric field imposed on a nematic is connectecJ;ld'gzlIat?‘c:3 ?ﬁggﬁgg%‘gﬂ%gﬁg%’g{,@’ redict that the svstem
with at least two different processes: namely, the dielectric P y

constant anisotropy and the flexoelectric effgmlarization exhibits four phases as the molecular biaxiality varies: posi-
induced b di tpyt' n B £ th v the di tive and negative uniaxial phases, respectively, formed by
induced by a distortion because of the symmetry, the di- prolate and oblate molecules, as well as biaxial and isotropic
electric permittivity differs in value along the different axes

. ) : phases. The nematic-isotropibll) phase transition is ex-
and, generally, it acquires three different values A pected to be of the first order and weakens as the biaxiality

=X,y,z The dielectric anisotropies are defined as increases until it becomes continuous at the point of maxi-
1 mum molecular biaxiality, the Landau bicritical point. At this

Aey=6- (& +€), (1) point, t_he system shou_,lld_go direct_ly fro_m 'ghe biaxia_ll to the_

2 isotropic phase. The biaxial nematic—uniaxial nematic transi-

tion is expected to be of second order.
Aeg= €, - €. 2) In the Onsager theory, the isotropic-nematic transition is
attributed to the tendency of pairs of molecules to minimize
In the uniaxial nematic phaskez=0 and the value oA,  their excluded voluméor the second virial coefficier,).
can be positivel2] or negative[3] for nonpolar or polar That is why it is important to know the dependenceBgfon
substances, respectively. Compounds with a large anisotrofifie orientations of molecules. Tjipto-Margo and Evah6]
possess a strongly polar group in specific positipis As  calculated the mutual orientation dependence of the second
far as the flexoelectric effect is concerned, it was originallyvirial coefficientB, for hard biaxial ellipsoids. The distribu-
explained as a steric effect due to the asymmetry of the maion functions were determined there for the Onsager and the
lecular shapd5]. But Prost and Marcero[6] showed that Lee models. They noticed that introduction of the biaxiality
the polarization of a deformed liquid crystal is also producechas a pronounced effect: both tRg order parameter and the
as a result of a gradient in the average density of quadrupolfirst-orderness of the IN transition were greatly reduced from
moments of molecules. In this paper we deal with nonpolathat of comparable uniaxial bodies. In 1997 Vég#] calcu-
molecules, while the flexoelectric effect is not considered. lated numerically the first five virial coefficients of the hard
The purpose of the dielectric theory is to relate the macellipsoids. At the same time Zakhlevnykh and Sosfis]
roscopic permittivitiege) or the susceptibilitie$y=e-1) to  suggested a method that enables one to calculate exactly the
the molecular properties, i.e., to the polarizabilityand the  second virial coefficient for the system of biaxial ellipsoidal
dipole moment. When the existing dielectric theory of iso-particles, as well as to obtain a simple approximation for-
tropic liquids is applied to liquid crystals, the degree of or-mula for the third one.
dering must first be taken into account. Next, the question of Taylor and Herzfeld[19] studied the liquid-crystalline
the internal field experienced by a molecule has to be takephase behavior of biaxial hard particlepheroplatelejsus-
into account. For isotropic liquids, due to the contributions ofing a scaled particle calculation of the configurational en-
surrounding molecules, the internal field is not equal to theropy, combined with the cell description of translational or-
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der. If the translational ordering was ignored, the density vs 2y (3N
article biaxiality phase diagram showed a cusp-shaped bi- ef =— |

pal 1ality phase diagre p-shaped 2¥+3\ V

axial nematic phase intervening between the two uniaxial

nematic phases. When the possibility of translational ordef, the expressions fdn, F, andf the averaged susceptibility

was considered, the phase diagram showed three distingtang the polarizabilityiz were used, i.e., the anisotropy was

smecticA (Sm-A) phases, in addition to the two uniaxial peglected. Apart from that, the molecule under consideration

phases, and only a small remnant of the biaxial nematigyas contained in apheroidalcavity. This is unrealistic for

phase. ) o ) liquid crystals and that is why we would like to present a

The glastlc constants of a liquid crystal detgrmme thegifferent approach. We note that Maier and Mejtlowing

change in the Helmholtz free energy of a nematic phase a8nsager took into account the polarization of the surround-

the liquid crystal is exposed to deformations of its orienta-jngs py the permanent and induced dipole moments. This

tional field. The understanding of the elastic constants oOfgads to the presence of a reaction field. In the case of non-

liquid crystals is important for a number of reasons. In thepolar molecules the reaction field is small and it is neglected

first place, they appear in the description of virtually all phe-j, our calculations.

nomena where the variation of the director is manipulated by pealing with biaxial or less symmetric systems, one has

external fields(cf. display devices Second, they provide 4 se the standard rotation matrix elemebf¥ [35] which

unusually sensitive probes of the microscopic structure of th‘aepend on the three Euler angles. Some authors. in order to

ordered state. Valuable information regarding the nature andes| with the real functions with the desired symmetry, de-
importance of various anisotropies of the intermolecular posne gifferent linear combinations of these functidag,33.

tgnUaIs and of th_e spatial and the angular corrglatlon funCWe would like to introduce real basic functiof’, which
tions can be derived from a study of the elastic constants, . 0 v
- L . “are equivalent td"” | but have comfortable propertiésee
Knowledge of the liquid-crystal elasticity is also needed in . v
. - " 'Appendix A).
the study of defects in thefi20]. The theory of the elastic o . .
A . : The organization of this paper is as follows. In Sec. Il the
constants for biaxial nematic phases was developed in fhean field theory of nematic ordering is provided. In Sec. Ill
number of paperf21—-27. The microscopic expressions for . y ernng s p A
; - ; o the relation among the susceptibility, the polarizability, and
the elastic constants were given and their splitting was pre; : : . .
. R . - the order parameters is established. Section IV is devoted to
dicted at the uniaxial-biaxial nematic transition for some o ;
selected applications of the presented theory. Section V con-
model system$26].

The hydrodynamics of biaxial nematics was obtained intalns a summary. The Appendixes provide the definitions and

[28,29. Viscous properties of nematic liquid crystals com-the main properties of the basic functioisee Appendix A

- . ; the shape factors for the susceptibiliticsee Appendix B
posed of biaxial molecules were s_tud|eq by Flallk.OV\[ﬁ(]] and the model for the molecular polarizabilitisee Appen-
and the formulas for the Leslie viscosity coefficients were dix C)
provided there. ’

The possibility of a biaxial nematic mesophase has been
confirmed by Monte Carlo simulations of a lattice system Il. THE MEAN FIELD THEORY

composed of biaxial molecul¢§1-33 and of a fluid system The ordering of nematic liquid crystals can be described

of biaxial spherocylinderg34].

Our aim is to present the theory of the static susceptibilityby meanhs (t); at Ielastftwo typ?s_ of th?orﬁﬁ In the Onsggterth
of nonpolar biaxial nematic liquid crystals. A discussion of at;)proac | e on yd c;Lces OI |m|por ance.cqlrrestpon c: €
the results for uniaxial nematic liquid crystals and for soligSteric repuision an € mojecules are simrar to very long
crystals can be found i#]. The most important results were rods. In th_e molecul_ar-statls_,t!cal _theory_ of Maier and Sa_upe
given by Maier and Meief3] who extended the Onsager the nematic-isotropic transition is attributed to the aniso-

tropic part of the dispersion forces, the London—van der

theory of susceptibility to polar nematic liquid crystals. We L .
can write their results in the following form, which can be \;\r/%alé‘afggges' We use an approach similar to that of Maier

used for isotropic, uniaxial, and biaxial nematic phases: . . .
Let us consider a system of molecules contained in a

N volume V at temperaturel. We assume that the potential
EOXx:VhF(Eo<ax>+BF<MxMx>)a (3)  energy of the interaction¥(R;,R,) depends only on the

molecule orientation&,, R,. What is more, this energy does
Jot depend on the reference frame orientation

(6)

wherey is the permanent dipole moment of a molecule, an

h and F are the factors introduced by Onsager and can be
y onsag V(RR,RRy) = V(Ry,R,).

written as
_ This leads to the general form
he X*3 @)
2x+3’ V(R,Ry) = 2 2 v EL(R'Ry), (7)
i
F= 1 (5) where Eii)v are the real functions described in Appendix A.
1-eyf’ For unitary phases there is the following property:
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v, = v, S p)sgrv). ®)
The one-particle distribution functiohis defined in such a

way thatf(R)dR gives the probability of finding the molecule

orientation within the rangER,R+dR]. It has the normaliza-
tion
f drRf(R) =1. 9)

We calculate the mean of a selected functfonA(R) as
(A) = f dR (RIA(R). (10

The system state is described by the order param(;E%E}s.

PHYSICAL REVIEW E 71, 021710(2009

The nonzero coefficients from the potential energy wﬁ%—:
vg%,), vf)zz):v(zzo), andv(zzz). Note that the rotations imply thB,
symmetry group but, in fact, we end up with tBg, sym-

metry group[26].
Ill. THE DIELECTRIC SUSCEPTIBILITY
The static electric polarization induced by the external
field E in an isotropic liquid is given by

5:X€0é. (19)

P and y can be divided into the part due to the molecular
polarizability (the induced pajtand the part due to the di-

pole moment(the orientation pajt In this paper we deal
with the induced part of the polarization and of the suscep-

The free energy of the system consists of the internal energypjjity.

term and the entropy term

F= g f dedsz(Rl)f(RZ)V(Rl’ RZ)

+ NkBTf dR f(R)IN[f(RICy], (11)

where the constarnty is inserted to give the correct units.

The mean field acting on the molecule has the form

W(R) =3 X whEL(R). (12
iomv

We derive from the Boltzmann distribution that
f(R) = exd- BW(R)]/Z, (13

where 8=1/kgT and the normalization factor is
Z:f dRexd - SW(R)]. (14

The consistency condition has the form

W(Ry) = f dRA(RYV(R,Ry). (15

We get the set of equations for the mean field coefficients

wih =2 <E§Pp>v§3%[— sgr(u)sgr(v) + sgr(p)sgr(v)
p

+sgriu)sgrip) + 1]. (16)

In order to solve our model we should find an orientationally

stable solution with minimal free energy.

In an anisotropic medium the dielectric susceptibility
(permittivity) is a second-rank tensor. We use the laboratory
reference frameé,,&,,€,) and we set the direction of the

nematic phase by means of the relatidfrséx, I\7I=éy, and
N=€,. The equation for the polarization has the form

Pr=x\e0En, A=XY,zZ (20)
On the other hand we can write
N
Py = \—/<px>, N=XY,Z, (21)

wherep, are the components of the electric moment induced
in the selected molecule. The momgntdepends on the mo-
lecular polarizability tensow and the internal fieldE™. Our
aim is to find the relation betweeE™ and E in order to
connecty with a. We generalize the Clausius-Mossotti ap-
proach by the assumption that the molecule is in a nonspheri-
cal cavity of molecular dimensions and surrounded by the
anisotropic polarized continuum.

Let us describe the molecule orientations by the set of

three unit orthogonal vecton(g,rﬁ,ﬁ),

r:E RnéﬁE NS
N A
rﬁ:E szé)\zz m,é,,
N A

A= Ry6, = 2 N6, (22)
A A

Now we would like to discuss how to use the moleculewhere the matrix elemen®, (i=1,2,3 and\=x,y,2) sat-
symmetry to limit the number of mean field coefficients. Letisfy the conditions
R0 denote the rotation from the molecule symmetry group

V(RiRmor R2) = V(Ry, RoRo) = V(R Ry).- (17)

Thus
E(RRm) =EL(RGR =ELR. (19

For biaxial molecules we usB,,=R,(7) and Ro=R(m),
and we recover the Straley model of biaxial nemafi&k

> RyRi\ = 8, (23
A

2 RyRp=dy4. (24)

The above relations express the orthogonality and the com-
pleteness of the local frame.
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If the macroscopic fiel@ and the polarizatiorﬁ are ori-
ented along the axis, theith component of the internal field

EM can be expressed as

EM=E +PQle, =(E+PQle)R, 1=1,2,3,

(25)

where(); are the shape factors which depend on the cavityLu
shape. Exemplary formulas for the ellipsoid and the rectan-

gular box are given in Appendix B.

The electric fieldEM induces the electric momeptwith
the components

pi=ael", =123, (26)
Then, the component along tleaxis is of the form
pzzii‘z piRizzzit ai(€oE + PQY)R?,. (27)
From Egs.(20), (21), and(27) we obtain
=S a0 R, 28)

In a similar way we findy, and x,, and we get the general
formula

NV X ai(R3)

N=X,Y,Z (29)

1- (V)2 (R

PHYSICAL REVIEW E 71, 021710(2009
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FIG. 1. The temperature dependence of the order parameters
<E2)V) (E[juv] in the picture. T denotes the dimensionless tempera-
ture. Thel-Ny transition is aff=1.0 and theNy-Ng transition is at
T=0.437.

Axs = (NV)[Aag(ED) - (23/3)Aay(ER)]
~ (NIV)Aag(ES). (35

We do not use the small density limit in our exemplary cal-
culations.

IV. EXEMPLARY CALCULATIONS

In this section we carry out calculations for the system of
biaxial molecules. We assume that the molecules are similar

All elementsR’ can be expressed by means of the seIectquO ellipsoids with the three different ax¢ga) X (2b) X (2c),

four RZ,, R2,, R5,, andR3,, or by means of the functiors,

ED, EZ, andEY (see[26] and Appendix A.

For the completely ordered phaééi) S, and we get

\%
ay = SO AN=XY,Z.

) 30
N1+ Q)\X)\ ( )

It is possible to determine from Eq.(30) by taking y from
the solid stat¢4].

In the small density limit, the susceptibility is small and
then from Eq.(29) we obtain the simplified result

N N
X\ = VE ai<Ri2)\> = v(a)\>1 )\ = vavz' (31)
i
Let us define the anisotropies
1
Aay=az- E(al +ap), (32
Aag=a,— (33

wherea:b:cis 1:2:5. The volume of every molecule is equal
to V,o=(4/3)mabc We used the packing fractiop
=V,oN/V=0.1; the density is constant. The elements of the
polarizability tensore and the shape factors are

a1= 3Vmon (36)

ap = 4Vm0|, a3 = 5.567 22/m0|,

0,=0.954 20, 0,=0.30760, Q3;=0.05268.(37)

The values of the polarizability tensar come from the
simple model described in Appendix C.

In order to get the values of the coefﬂuem@ we used
the excluded volume method by Stralgg). In our system,
on decreasing the temperature, we meet the first-order tran-
sition from the isotropic to the uniaxial nematic phase
(I-Ny) at Ty=1.0(T denotes the dimensionless temperature
and the second-order transition to the biaxial nematic phase
(Ny-Np) at Tg=0.437. At thel-N, transition we have

Buvs = - 3.990 56,

Now we can write the expressmns that can be used to esti-

mate the order paramete(rlﬁ0 )> and(E ) from the experi-
mental values of the susceptibilities

Axu = (NV)[Aa(ED) - (V3/2) Aag(ED)]

~ (NIV)Aay(ER), (34)

B = Buv'd =2.064 57,

(2) —

ﬁuvzz _0777 40

(38)

For an arbitrary temperature we can calculate
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FIG. 2. The temperature dependence of the susceptibilities in FIG. 3. The density dependence of the order parameters
the case of ellipsoids of dimensions 1:2T5denotes the dimension- <E2)V) (E[juv] in the picturg. p denotes the packing factor. The

less temperature. In the isotropic ph&$e>1.0) xx=x,=xz. In the I-Ny transition is atp=0.1 and theNy-Ng transition is atp
uniaxial nematic phas€0.437<T<1.0) we havey,=x,<x. In =0.229.
the biaxial nematic phas@ <0.437 we get three independepj
<Xy <Xz at constant temperature. We assumed that the interactions are
proportional to the phase density. The similar assumption
pod), = Bl TyIT. (39)  was used in the context of the scaled particle theory by Cot-

ter [36] and others. At constant temperature we get the fol-

The temperature dependence of the order paraméﬁggs, lowing relation between the interaction coefficients:
(E(Z)), (E(2)>, and(E(z)) is presented in Fig. 1. The order D — o)
paorgmetez?s were uszezd to calculate the temperature depedence Boulp) = Busilpolplio, (40
of the susceptibility shown in Fig. 2. wherep, is the reference state density. We ugge 0.1 and

In the uniaxial nematic phase we hayg> x,=xx. At the ,Bvﬁil(po)Z,BUvgz/(po) corresponding to thd-N, transition
Nu-Ng transition the lower susceptibility branch splits into (T=T,). The density dependence of the order parameters is
two independenyy > x«. The results stay similar also in the shown in Fig. 3. On increasing the density, we find the
case of rectangular boxes. I-Ny transition atp=0.1 and theNy-Ng transition atp

We would like to note that during numerical calculations =0.229. The density dependence of the susceptibilities in the
one physical configuration can give several sets of differengage of ellipsoids is presented in Fig. 4.
values of the order parameters. This is possible due to free- \we would like to note that for high densities the presented

dom of choice of the reference frame orientation. Let Ustheory may be inadequate. As an approximate border for the
consider the ideal biaxial nematic phase. There are six physi-

cally equivalent configurations where the symmetry axes co- 5

incide with the reference frame axes. They are summarizec
in Table I. We used the configuration witkL,M,N) y Ly
=(&.€,,€) where the order parameters have the simplest i *
values.
In our model we examined also the density dependence o 3+
the order parameters and of the susceptibility on the density,, Xz
TABLE I. Physically equivalent configurations of the ideal bi-
axial nematic phase. We used the configuration withM,N)
=(6,,6,,6). 1y
LMN — (Eq) (Eoa) (Ex) (Ex)
0 0.1 0.2 0.3 04 0.5
XYz 1 0 0 1 p
xzY ~1/2 V3/2 ™3/2 1/2 FIG. 4. The density dependence of the susceptibilities in the
YXZ 1 9 _0 -1 case of ellipsoids of dimensions 1:2ipdenotes the packing factor.
YZX -1/2 —\3/2 V312 -1/2 In the isotropic phasép<0.1) xx=xy=x. In the uniaxial nematic
ZXY -1/2 V3/2 —-/3/2 -1/2 phase(0.1<p<0.229 we havex,=yx,<x; and nextx,=xy,> x,
ZY X -1/2 V3/2 V3/2 1/2 In the biaxial nematic phasg>0.229 we get the relationyy

> Xy> Xz
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5 culations, we defined a set of basic functions and have deter-
mined their properties.
4 Ax Xy The ordering of the phase was described by means of the

mean field theory. We would like to note that this part of the
theory is, to a certain degree, independent of the calculations
37 of the susceptibilities and can be easily replaced by a more
Xz sophisticated approach.

The theory was used to calculate the temperature and the
density dependence of the order parameters and of the sus-
ceptibilities for the model system. On decreasing the tem-
11 perature at constant density, the splitting of the susceptibility
was found to two and three branches at the isotropic-uniaxial
nematic and uniaxial-biaxial nematic transitions, respec-
0 01 02 0.3 04 0.5 tively. On increasing the density at constant temperature,

P splittings of the susceptibility were also found, but the order-

reversal of the susceptibilities was also present.
In conclusion, we note some possible extensions of the
gresent theory. First, the theory should be extended to polar
molecules. Early results for the uniaxial molecules are given
in [4]. Recently, Mettoutet al. [37] presented a theory of
considered molecules we can chogse0.381, where the polar biaxial nematic phases based on the L_andau ex_pansion
negative susceptibilities appear B of the fre_e energy. Second, the more reallsnc calculations of
: the polarizabilities are needed, which will be related to the

In order to understand the susceptibility behavior we “@Yata on the molecular structure. Finally, one should consider
write Eq. (29) in the case of the completely ordered phase

NN also spatially ordered phasésnectic, crystallinewhich can
((Ego) =(E5,)=1) appear instead of the biaxial nematic phase.

T 1-(NV)ay 0,

FIG. 5. The density dependence of the susceptibilities in the"'9
ideal biaxial phasdellipsoids 1:2:%. p denote the packing factor.
On increasing the density, we observe the ordering reversal of th
susceptibilities fromy, < xy <x, t0 x> xy> Xz

X N=X,Y,Z (41) APPENDIX A

Below we list the properties of the functiori‘éj)v. The
functions can be used to describe any physical quantity that
depends on the three Euler angles.

In our calculations we have; < a,<az and a;Q;> a,(),
> a3()3. Thus, on increasing the density, we get the follow-

ing sequence of relationsee Fig. (1) The definition is
<y < - - .
X=Xy = Xe ED(R) = normi(y, ») X [DU(R) + sgriu)sgr(v)(- 1)*
Xy < Xx < Xa xDY), _(R) +sgr(v)(- 1)'DY_(R) + sgr(u)
x(- DY), (R)],

Xy < Xz < Xx» _ .

where R=(¢, 6,¢) (the three Euler anglgsj is a non-
X2 < Xy < Xx- negative integer, and andv are integers. The functioris

are the standard rotation matrix elemef8s] and

But, in the isotropic and the uniaxial nematic phases, the

selected order parameters are equal to zero, the correspondﬁom,(X )= (i)%b‘oﬁﬁo@[(l +i) + (1 —i)sgnx)sgry)]
ing susceptibilities can be identical, and the full sequence is Y V2 2 g gyl
not observed. We note that the full sequence can be obtained
for the molecules at the so-called self-dual pdiat=b?),

: . 1 forx=0,
where the direct-Ng transition appears. sgn(x) =

-1 forx<O.

V. SUMMARY Note that

In the present paper we proposed a statistical theory of the
dielectric susceptibility of nonpolar biaxial nematic liquid
crystals. A generalized Claussius-Mossotti approach wagVe have also
used and the reaction field was neglected. We took into ac-

. .. 1 2
count the shape anisotropy of the molecu(bgxial mol- {5[(l+i) +(l—i)sgr(,u)sgr(v)]} = sgr{w)sgr(v).

sgn(—Xx) = = sgr(x) + 23y.

ecules in biaxial cavity the anisotropy of the phaganiso-
tropic and not averaged susceptibility in expressipasd . )
the incomplete orderingprder parameteys (2) The funct.|onsEW are real. )

The biaxial molecules required complex expressions de- (3) For anyj the number of the function&,, equals
pending on the three Euler angles. In order to simplify cal-(2j+1)? and it is also the number of functiorﬁﬂl,{)v.
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(4) The functions satisfy the orthogonality relation
f dR ED(REX(R) = 5x8,,0,,87/(2] + 1).
We can write more generally
f dR E)(REX(R;'R) = 87’2 é‘JkE(jZ)(Rl)&,U%[l

- sgr(u)sgr(v) +sgr(p)sgn(v)
+sgriu)sgrip)].

PHYSICAL REVIEW E 71, 021710(2009

i) =g
Fuo=Eu
Forj odd, u, v even, andu, v=2

F(l) =g

e
(9) Let us assume that the three Euler anglRs
=(¢,6,y) determine the orientation of the three unit or-

thogonal vector$r,rﬁ,ﬁ). The vector coordinates can be ex-
pressed by means of the functiolE/%i:

l,= ER(R) = cosf cos¢ cosy— sin ¢ sin i,

(5) The properties connected with the physical system

symmetries are
) —(— 1y
Ex/(RR(m)) = (- 1)’EL(R),

ED(R(mR) = (- D*EN(R),
EV(RR(m) = sgr(v)(- DE(R),

EUL(R/(mR) = sgrip)(- D'EJ(R).

(6) Let R*=(-¢,-6,-¢) denote the rotation inverse to
R=(¢,6,¢). Then

() (p~1y = ()
ELR™ = sgriw)sgrmEL(R).
(7) For the zero rotatioi¢p= 6=¢=0) we have
E(D(O) - 5

(8) The connections between the functlolﬁ%) and the
mvanantsF(') [26] are as follows. Fof, u, v even andu,
v=0

l,=—-EDL(R) = cosd sin ¢ cosyr+ cos¢ sin ¢,
I, -E (R)-—smocoslp

m, = E(Y,(R) = - cosf cos ¢ sin ¢ — sin ¢ cos,

m,=EY_,(R) = - cosd sin ¢ sin ¢+ cos¢ cosy,
m, = E{Y,(R) = sin@sin ¢,
=E{(R) =sinfcos¢,
n,=-E%4(R) =sin dsin 4,

E(R) = cosé.
(10) The integral over the product of thr@' has the

form

f dR ElY), (RER, (RIS, (R) = 8°N0rm(y, v)NONM iz, v,)NOM{ g, vg)[ 1 + Sg 1) G po) g ) (- 1)11112413)]

><[1+sgr(vl)sgr(v2>sgrrv3><—1><J1+iz+is>][<“ 5 ‘3)+( bk ‘3)
M1 M2 M3 My M2 M3

1

X(=D*1sgrip) + (
M1

X[(Jl i2 13>+(11 i2 >( 1)Vlsgr(vl)+< iz
vy Vv V3 — V1 V2 V3 Vi T V2 V3

+<Jl i2
Ve Vp T3

J2
M2 M3

J3>(— 1)"25<91rw2)+(ll 2 _J;G)(— 1)%59"(#3)}

M1 M2

)(— 1)"2 sgn(v,)

° )(— 1" sgr(V3)],

Where(lik'p) are the 3} symbols of Wignef35]. As a special the anisotropic continuum. The cavity shape is taken into
case(j;=u3=v3=0), we can obtain the orthogonality equa- account when we calculate the dependence of the internal
tion. electric field on the macroscopic electric field and on the
polarization. As a result we get different shape factors for
different possible shapes.

In our approach we assume that a molecule is in the non- (1) The shape factors for the ellipsoids with the axes 2
spherical cavity of molecular dimensions and surrounded by< 2b X 2c are

APPENDIX B
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0,=J1- a2/b2, 1 —az/cz), APPENDIX C
- 0 Let us explain the values of the polarizability tensar
0, =J(1-b%a%1 -b%c), We considered a simple model of a molecule as a set of
parallel chains of atoms. For a molecule of dimensions 1:2:5
Q;=J(1-c%a?1-c?b?), we have two chains, which consist of five atoifws five

chains with two atoms One atom consists of the pointlike
positive charge and the spherical cloud of the negative
1 dtt2 charge. The relative positions of the positive charges are
/ > = fixed whereas the negative charge positions can change. In
0 V(1 -xt)(1-yt) the absence of the electric field, the negative charge centers

Generally, the functiod(x,y) can be expressed by means of coincide with the positive charges.

where the function)(x,y) we define forx<1 andy<1 as

Jx,y) =

the elliptic integrals, but in special casemiaxial molecules Let us consider a chain of atoms. When aveakelectric
there are simple results. Far>0 we have field E is appliedalongthe chain, the negative charge centers
do not coincide with the positive charges and dipole mo-
Ixy) =y %), ments are induced. We assume that the positive and negative

charges interact with one another and with the external field.
300.0 = 1 The chain volumé/ ., is the sum of the atom volumes. The
0,0 = 3’ induced polarizability along the chaig,,i, we define as

P = &chain€oE

and it has the dimension of the volume. We calculated the
total dipole moments and the induced polarizability for dif-
ferent chain lengths:

J(wW?,0) = iﬁ[arcsir(w) -wy1-w?],

1 — —
J(-w?0) = ST +w2 - Injw + V1 +w?],

N=1, achain= 3Vchain

! N=2, aman=4Nenan
J(WZ,WZ) = F[_ W+ arctanl(lw)], Qchain chain

N=3, achain=4.703 7Wchain,

1
J(-wW2,-w?) = VTS[W— arctargw)]. N=4, agan=5.203 46/
~(2) The shape factors for the rectangular boxes of dimen- N=5, agman=5.567 2%cnain
sions AX2bX 2c are
2 . [ bc 1 N=6, achain=5.839 SV cpain,
Q= — arcsir| — |
™ | V(@ +b%)(a”+c) |
N=7, achain=6.048 OWcpain,
Q.= 2 . ac B B
2= A e R | N=8, achain=6.213 8 cain,
5 - ab - n= 9, Qchain™— 6.346 70/chain- (Cl)
Q3= pu arcsir @+ A+ | The induced polarizability values calculated for the chains
- - were used as an approximation of the molecule polarizabil-
Note thatQ;+Q,+Q5=1. ities in different directiongV i, was replaced with/, ).
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