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A statistical theory of the dielectric susceptibility of nonpolar liquid crystals, whose constituent molecules
are biaxial, is proposed. The ordering is described by means of the mean field theory, in which a set of basic
functions is introduced. The dielectric susceptibilities are derived using a generalized Clausius-Mossotti ap-
proach. The theory was used to calculate the temperature and the density dependence of the order parameters
and of the susceptibilities. On increasing the density, an ordering reversal of the corresponding susceptibilities
is obtained.
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I. INTRODUCTION

In liquid-crystal nematic phases the molecule gravity cen-
ters do not have long-range order, but there is a partial direc-
tional order of the moleculesf1g. They tend to be parallel to

selected axes, labeled by unit vectorsLW , MW , and NW . In the

uniaxial nematic phase there is one axisNW ;−NW sthe symme-
try of the phase isD`hd, whereas in the biaxial nematic phase
all three axes are involvedsthe symmetry of the phase is then
D2hd.

A static electric field imposed on a nematic is connected
with at least two different processes: namely, the dielectric
constant anisotropy and the flexoelectric effectspolarization
induced by a distortiond. Because of the symmetry, the di-
electric permittivity differs in value along the different axes
and, generally, it acquires three different valuesel, l
=x,y,z. The dielectric anisotropies are defined as

DeU = ez −
1

2
sex + eyd, s1d

DeB = ey − ex. s2d

In the uniaxial nematic phaseDeB=0 and the value ofDeU
can be positivef2g or negativef3g for nonpolar or polar
substances, respectively. Compounds with a large anisotropy
possess a strongly polar group in specific positionsf4g. As
far as the flexoelectric effect is concerned, it was originally
explained as a steric effect due to the asymmetry of the mo-
lecular shapef5g. But Prost and Marcerouf6g showed that
the polarization of a deformed liquid crystal is also produced
as a result of a gradient in the average density of quadrupole
moments of molecules. In this paper we deal with nonpolar
molecules, while the flexoelectric effect is not considered.

The purpose of the dielectric theory is to relate the mac-
roscopic permittivitiessed or the susceptibilitiessx=e−1d to
the molecular properties, i.e., to the polarizabilitya and the
dipole moment. When the existing dielectric theory of iso-
tropic liquids is applied to liquid crystals, the degree of or-
dering must first be taken into account. Next, the question of
the internal field experienced by a molecule has to be taken
into account. For isotropic liquids, due to the contributions of
surrounding molecules, the internal field is not equal to the

macroscopic fieldf4g. In the case of liquid crystals, this situ-
ation is more complicated because of the various anisotro-
pies and the incomplete orientational order.

We would like to propose a dielectric theory for the
phases that consist of rigid nonpolar biaxial molecules. De-
spite the dearth of experimental realizations of biaxial liquid-
crystalline phases, they have been extensively studied theo-
retically. The ordering of these phases has been studied by
means of mean field theoryf7–9g, counting methodsf10,11g,
the Landau–de Gennes theoryf12,13g, bifurcation analysis
f14g, and density functional theoryf15g.

All the theories mentioned above predict that the system
exhibits four phases as the molecular biaxiality varies: posi-
tive and negative uniaxial phases, respectively, formed by
prolate and oblate molecules, as well as biaxial and isotropic
phases. The nematic-isotropicsNId phase transition is ex-
pected to be of the first order and weakens as the biaxiality
increases until it becomes continuous at the point of maxi-
mum molecular biaxiality, the Landau bicritical point. At this
point, the system should go directly from the biaxial to the
isotropic phase. The biaxial nematic–uniaxial nematic transi-
tion is expected to be of second order.

In the Onsager theory, the isotropic-nematic transition is
attributed to the tendency of pairs of molecules to minimize
their excluded volumesor the second virial coefficientB2d.
That is why it is important to know the dependence ofB2 on
the orientations of molecules. Tjipto-Margo and Evansf16g
calculated the mutual orientation dependence of the second
virial coefficientB2 for hard biaxial ellipsoids. The distribu-
tion functions were determined there for the Onsager and the
Lee models. They noticed that introduction of the biaxiality
has a pronounced effect: both theP2 order parameter and the
first-orderness of the IN transition were greatly reduced from
that of comparable uniaxial bodies. In 1997 Vegaf17g calcu-
lated numerically the first five virial coefficients of the hard
ellipsoids. At the same time Zakhlevnykh and Sosninf18g
suggested a method that enables one to calculate exactly the
second virial coefficient for the system of biaxial ellipsoidal
particles, as well as to obtain a simple approximation for-
mula for the third one.

Taylor and Herzfeldf19g studied the liquid-crystalline
phase behavior of biaxial hard particlessspheroplateletsd us-
ing a scaled particle calculation of the configurational en-
tropy, combined with the cell description of translational or-
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der. If the translational ordering was ignored, the density vs
particle biaxiality phase diagram showed a cusp-shaped bi-
axial nematic phase intervening between the two uniaxial
nematic phases. When the possibility of translational order
was considered, the phase diagram showed three distinct
smectic-A sSm-Ad phases, in addition to the two uniaxial
phases, and only a small remnant of the biaxial nematic
phase.

The elastic constants of a liquid crystal determine the
change in the Helmholtz free energy of a nematic phase as
the liquid crystal is exposed to deformations of its orienta-
tional field. The understanding of the elastic constants of
liquid crystals is important for a number of reasons. In the
first place, they appear in the description of virtually all phe-
nomena where the variation of the director is manipulated by
external fieldsscf. display devicesd. Second, they provide
unusually sensitive probes of the microscopic structure of the
ordered state. Valuable information regarding the nature and
importance of various anisotropies of the intermolecular po-
tentials and of the spatial and the angular correlation func-
tions can be derived from a study of the elastic constants.
Knowledge of the liquid-crystal elasticity is also needed in
the study of defects in themf20g. The theory of the elastic
constants for biaxial nematic phases was developed in a
number of papersf21–27g. The microscopic expressions for
the elastic constants were given and their splitting was pre-
dicted at the uniaxial-biaxial nematic transition for some
model systemsf26g.

The hydrodynamics of biaxial nematics was obtained in
f28,29g. Viscous properties of nematic liquid crystals com-
posed of biaxial molecules were studied by Fiałkowskif30g
and the formulas for the Leslie viscosity coefficients were
provided there.

The possibility of a biaxial nematic mesophase has been
confirmed by Monte Carlo simulations of a lattice system
composed of biaxial moleculesf31–33g and of a fluid system
of biaxial spherocylindersf34g.

Our aim is to present the theory of the static susceptibility
of nonpolar biaxial nematic liquid crystals. A discussion of
the results for uniaxial nematic liquid crystals and for solid
crystals can be found inf4g. The most important results were
given by Maier and Meierf3g who extended the Onsager
theory of susceptibility to polar nematic liquid crystals. We
can write their results in the following form, which can be
used for isotropic, uniaxial, and biaxial nematic phases:

e0xl =
N

V
hFse0kall + bFkmlmlld, s3d

wherem is the permanent dipole moment of a molecule, and
h and F are the factors introduced by Onsager and can be
written as

h =
3x̃ + 3

2x̃ + 3
, s4d

F =
1

1 − ãe0f
, s5d

e0f =
2x̃

2x̃ + 3
S3N

V
D . s6d

In the expressions forh, F, and f the averaged susceptibility
x̃ and the polarizabilityã were used, i.e., the anisotropy was
neglected. Apart from that, the molecule under consideration
was contained in aspheroidalcavity. This is unrealistic for
liquid crystals and that is why we would like to present a
different approach. We note that Maier and Meiersfollowing
Onsagerd took into account the polarization of the surround-
ings by the permanent and induced dipole moments. This
leads to the presence of a reaction field. In the case of non-
polar molecules the reaction field is small and it is neglected
in our calculations.

Dealing with biaxial or less symmetric systems, one has
to use the standard rotation matrix elementsDmn

s jd f35g which
depend on the three Euler angles. Some authors, in order to
deal with the real functions with the desired symmetry, de-
fine different linear combinations of these functionsf14,33g.
We would like to introduce real basic functionsEmn

s jd , which
are equivalent toDmn

s jd , but have comfortable propertiesssee
Appendix Ad.

The organization of this paper is as follows. In Sec. II the
mean field theory of nematic ordering is provided. In Sec. III
the relation among the susceptibility, the polarizability, and
the order parameters is established. Section IV is devoted to
selected applications of the presented theory. Section V con-
tains a summary. The Appendixes provide the definitions and
the main properties of the basic functionsssee Appendix Ad,
the shape factors for the susceptibilitiesssee Appendix Bd,
and the model for the molecular polarizabilitiesssee Appen-
dix Cd.

II. THE MEAN FIELD THEORY

The ordering of nematic liquid crystals can be described
by means of at least two types of theoriesf1g. In the Onsager
approach the only forces of importance correspond to the
steric repulsion and the molecules are similar to very long
rods. In the molecular-statistical theory of Maier and Saupe
the nematic-isotropic transition is attributed to the aniso-
tropic part of the dispersion forces, the London–van der
Waals forces. We use an approach similar to that of Maier
and Saupe.

Let us consider a system ofN molecules contained in a
volume V at temperatureT. We assume that the potential
energy of the interactionsVsR1,R2d depends only on the
molecule orientationsR1,R2. What is more, this energy does
not depend on the reference frame orientation

VsRR1,RR2d = VsR1,R2d.

This leads to the general form

VsR1,R2d = o
j

o
mn

vmn
s jdEmn

s jd sR2
−1R1d, s7d

whereEmn
s jd are the real functions described in Appendix A.

For unitary phases there is the following property:
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vnm
s jd = vmn

s jd sgnsmdsgnsnd. s8d

The one-particle distribution functionf is defined in such a
way thatfsRddRgives the probability of finding the molecule
orientation within the rangefR,R+dRg. It has the normaliza-
tion

E dR fsRd = 1. s9d

We calculate the mean of a selected functionA=AsRd as

kAl ; E dR fsRdAsRd. s10d

The system state is described by the order parameterskEmn
s jd l.

The free energy of the system consists of the internal energy
term and the entropy term

F =
N

2
E dR1dR2fsR1dfsR2dVsR1,R2d

+ NkBTE dR fsRdlnffsRdCNg, s11d

where the constantCN is inserted to give the correct units.
The mean field acting on the molecule has the form

WsRd = o
j

o
mn

wmn
s jdEmn

s jd sRd. s12d

We derive from the Boltzmann distribution that

fsRd = expf− bWsRdg/Z, s13d

whereb=1/kBT and the normalization factor is

Z =E dRexpf− bWsRdg. s14d

The consistency condition has the form

WsR1d =E dR2fsR2dVsR1,R2d. s15d

We get the set of equations for the mean field coefficients

wmn
s jd = o

r

kEmr
s jd lvrn

s jd1

2
f− sgnsmdsgnsnd + sgnsrdsgnsnd

+ sgnsmdsgnsrd + 1g. s16d

In order to solve our model we should find an orientationally
stable solution with minimal free energy.

Now we would like to discuss how to use the molecule
symmetry to limit the number of mean field coefficients. Let
Rmol denote the rotation from the molecule symmetry group

VsR1Rmol,R2d = VsR1,R2Rmold = VsR1,R2d. s17d

Thus

Emn
s jd sRRmold = Emn

s jd sRmol
−1 Rd = Emn

s jd sRd. s18d

For biaxial molecules we useRmol=Rzspd and Rmol=Rxspd,
and we recover the Straley model of biaxial nematicsf8g.

The nonzero coefficients from the potential energy arev00
s0d,

v00
s2d, v02

s2d=v20
s2d, andv22

s2d. Note that the rotations imply theD2
symmetry group but, in fact, we end up with theD2h sym-
metry groupf26g.

III. THE DIELECTRIC SUSCEPTIBILITY

The static electric polarization induced by the external

field EW in an isotropic liquid is given by

PW = xe0EW . s19d

PW and x can be divided into the part due to the molecular
polarizability sthe induced partd and the part due to the di-
pole momentsthe orientation partd. In this paper we deal
with the induced part of the polarization and of the suscep-
tibility.

In an anisotropic medium the dielectric susceptibility
spermittivityd is a second-rank tensor. We use the laboratory
reference frameseWx,eWy,eWzd and we set the direction of the

nematic phase by means of the relationsLW =eWx, MW =eWy, and

NW =eWz. The equation for the polarization has the form

Pl = xle0El, l = x,y,z. s20d

On the other hand we can write

Pl =
N

V
kpll, l = x,y,z, s21d

wherepl are the components of the electric moment induced
in the selected molecule. The momentpW depends on the mo-

lecular polarizability tensora and the internal fieldEW int. Our

aim is to find the relation betweenEW int and EW in order to
connectx with a. We generalize the Clausius-Mossotti ap-
proach by the assumption that the molecule is in a nonspheri-
cal cavity of molecular dimensions and surrounded by the
anisotropic polarized continuum.

Let us describe the molecule orientations by the set of

three unit orthogonal vectorsslW,mW ,nWd,

lW = o
l

R1leWl = o
l

lleWl,

mW = o
l

R2leWl = o
l

mleWl,

nW = o
l

R3leWl = o
l

nleWl, s22d

where the matrix elementsRil si =1,2,3 andl=x,y,zd sat-
isfy the conditions

o
l

RilRjl = di j , s23d

o
i

RilRib = dlb. s24d

The above relations express the orthogonality and the com-
pleteness of the local frame.
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If the macroscopic fieldEW and the polarizationPW are ori-
ented along thez axis, theith component of the internal field

EW int can be expressed as

Ei
int = Ei + PiVi/e0, = sE + PVi/e0dRiz, i = 1,2,3,

s25d

whereVi are the shape factors which depend on the cavity
shape. Exemplary formulas for the ellipsoid and the rectan-
gular box are given in Appendix B.

The electric fieldEW int induces the electric momentpW with
the components

pi = aie0Ei
int, i = 1,2,3, s26d

Then, the component along thez axis is of the form

pz = o
i

piRiz = o
i

aise0E + PVidRiz
2 . s27d

From Eqs.s20d, s21d, ands27d we obtain

xz =
N

V
o

i

ais1 + xzVidkRiz
2 l. s28d

In a similar way we findxx and xy, and we get the general
formula

xl =

sN/Vdo
i

aikRil
2 l

1 − sN/Vdo
i

aiVikRil
2 l

, l = x,y,z. s29d

All elementsRil
2 can be expressed by means of the selected

four R1x
2 , R1z

2 , R3x
2 , andR3z

2 , or by means of the functionsE00
s2d,

E02
s2d, E20

s2d, andE22
s2d sseef26g and Appendix Ad.

For the completely ordered phasekRil
2 l=dil and we get

al =
V

N

xl

1 + Vlxl

, l = x,y,z. s30d

It is possible to determinea from Eq. s30d by takingx from
the solid statef4g.

In the small density limit, the susceptibility is small and
then from Eq.s29d we obtain the simplified result

xl =
N

V
o

i

aikRil
2 l ;

N

V
kall, l = x,y,z. s31d

Let us define the anisotropies

DaU = a3 −
1

2
sa1 + a2d, s32d

DaB = a2 − a1. s33d

Now we can write the expressions that can be used to esti-
mate the order parameterskE00

s2dl and kE22
s2dl from the experi-

mental values of the susceptibilities

DxU = sN/VdfDaUkE00
s2dl − sÎ3/2dDaBkE02

s2dlg

< sN/VdDaUkE00
s2dl, s34d

DxB = sN/VdfDaBkE22
s2dl − s2Î3/3dDaUkE20

s2dlg

< sN/VdDaBkE22
s2dl. s35d

We do not use the small density limit in our exemplary cal-
culations.

IV. EXEMPLARY CALCULATIONS

In this section we carry out calculations for the system of
biaxial molecules. We assume that the molecules are similar
to ellipsoids with the three different axess2ad3 s2bd3 s2cd,
wherea:b:c is 1:2:5. The volume of every molecule is equal
to Vmol=s4/3dpabc. We used the packing fractionr
=VmolN/V=0.1; the density is constant. The elements of the
polarizability tensora and the shape factors are

a1 = 3Vmol, a2 = 4Vmol, a3 = 5.567 22Vmol, s36d

V1 = 0.954 20, V2 = 0.307 60, V3 = 0.052 68. s37d

The values of the polarizability tensora come from the
simple model described in Appendix C.

In order to get the values of the coefficientsvmn
s jd , we used

the excluded volume method by Straleyf8g. In our system,
on decreasing the temperature, we meet the first-order tran-
sition from the isotropic to the uniaxial nematic phase
sI-NUd at TU=1.0 sT denotes the dimensionless temperatured
and the second-order transition to the biaxial nematic phase
sNU-NBd at TB=0.437. At theI-NU transition we have

bUv00
s2d = − 3.990 56,

bUv02
s2d = bUv20

s2d = 2.064 57,

bUv22
s2d = − 0.777 40. s38d

For an arbitrary temperatureT we can calculate

FIG. 1. The temperature dependence of the order parameters
kEmn

s jd l sEf jmng in the pictured. T denotes the dimensionless tempera-
ture. TheI-NU transition is atT=1.0 and theNU-NB transition is at
T=0.437.
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bvmn
s jd = bUvmn

s jdTU/T. s39d

The temperature dependence of the order parameterskE00
s2dl,

kE02
s2dl, kE20

s2dl, and kE22
s2dl is presented in Fig. 1. The order

parameters were used to calculate the temperature depedence
of the susceptibility shown in Fig. 2.

In the uniaxial nematic phase we havexz.xy=xx. At the
NU-NB transition the lower susceptibility branch splits into
two independentxy.xx. The results stay similar also in the
case of rectangular boxes.

We would like to note that during numerical calculations
one physical configuration can give several sets of different
values of the order parameters. This is possible due to free-
dom of choice of the reference frame orientation. Let us
consider the ideal biaxial nematic phase. There are six physi-
cally equivalent configurations where the symmetry axes co-
incide with the reference frame axes. They are summarized

in Table I. We used the configuration withsLW ,MW ,NW d
=seWx,eWy,eWzd where the order parameters have the simplest
values.

In our model we examined also the density dependence of
the order parameters and of the susceptibility on the density

at constant temperature. We assumed that the interactions are
proportional to the phase density. The similar assumption
was used in the context of the scaled particle theory by Cot-
ter f36g and others. At constant temperature we get the fol-
lowing relation between the interaction coefficients:

bvmn
s jd srd = bvmn

s jd sr0dr/r0, s40d

wherer0 is the reference state density. We usedr0=0.1 and
bvmn

s jd sr0d=bUvmn
s jd sr0d corresponding to theI-NU transition

sT=TUd. The density dependence of the order parameters is
shown in Fig. 3. On increasing the density, we find the
I-NU transition at r=0.1 and theNU-NB transition at r
=0.229. The density dependence of the susceptibilities in the
case of ellipsoids is presented in Fig. 4.

We would like to note that for high densities the presented
theory may be inadequate. As an approximate border for the

TABLE I. Physically equivalent configurations of the ideal bi-

axial nematic phase. We used the configuration withsLW ,MW ,NW d
=seWx,eWy,eWzd.

LMN kE00
s2dl kE02

s2dl kE20
s2dl kE22

s2dl

XYZ 1 0 0 1

XZY −1/2 −Î3/2 −Î3/2 1/2

YXZ 1 0 0 −1

YZX −1/2 −Î3/2 Î3/2 −1/2

ZXY −1/2 Î3/2 −Î3/2 −1/2

ZYX −1/2 Î3/2 Î3/2 1/2

FIG. 2. The temperature dependence of the susceptibilities in
the case of ellipsoids of dimensions 1:2:5.T denotes the dimension-
less temperature. In the isotropic phasesT.1.0d xx=xy=xz. In the
uniaxial nematic phases0.437,T,1.0d we havexx=xy,xz. In
the biaxial nematic phasesT,0.437d we get three independentxx

,xy,xz.

FIG. 3. The density dependence of the order parameters
kEmn

s jd l sEf jmng in the pictured. r denotes the packing factor. The
I-NU transition is at r=0.1 and theNU-NB transition is at r
=0.229.

FIG. 4. The density dependence of the susceptibilities in the
case of ellipsoids of dimensions 1:2:5.r denotes the packing factor.
In the isotropic phasesr,0.1d xx=xy=xz. In the uniaxial nematic
phases0.1,r,0.229d we havexx=xy,xz and nextxx=xy.xz.
In the biaxial nematic phasesr.0.229d we get the relationxx

.xy.xz.
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considered molecules we can chooser=0.381, where the
negative susceptibilities appear.

In order to understand the susceptibility behavior we can
write Eq. s29d in the case of the completely ordered phase
skE00

s2dl=kE22
s2dl=1d

xl =
sN/Vdal

1 − sN/VdalVl

, l = x,y,z. s41d

In our calculations we havea1,a2,a3 and a1V1.a2V2
.a3V3. Thus, on increasing the density, we get the follow-
ing sequence of relationsssee Fig. 5d:

xx , xy , xz,

xy , xx , xz,

xy , xz , xx,

xz , xy , xx.

But, in the isotropic and the uniaxial nematic phases, the
selected order parameters are equal to zero, the correspond-
ing susceptibilities can be identical, and the full sequence is
not observed. We note that the full sequence can be obtained
for the molecules at the so-called self-dual pointsac=b2d,
where the directI-NB transition appears.

V. SUMMARY

In the present paper we proposed a statistical theory of the
dielectric susceptibility of nonpolar biaxial nematic liquid
crystals. A generalized Claussius-Mossotti approach was
used and the reaction field was neglected. We took into ac-
count the shape anisotropy of the moleculessbiaxial mol-
ecules in biaxial cavityd, the anisotropy of the phasesaniso-
tropic and not averaged susceptibility in expressionsd, and
the incomplete orderingsorder parametersd.

The biaxial molecules required complex expressions de-
pending on the three Euler angles. In order to simplify cal-

culations, we defined a set of basic functions and have deter-
mined their properties.

The ordering of the phase was described by means of the
mean field theory. We would like to note that this part of the
theory is, to a certain degree, independent of the calculations
of the susceptibilities and can be easily replaced by a more
sophisticated approach.

The theory was used to calculate the temperature and the
density dependence of the order parameters and of the sus-
ceptibilities for the model system. On decreasing the tem-
perature at constant density, the splitting of the susceptibility
was found to two and three branches at the isotropic-uniaxial
nematic and uniaxial-biaxial nematic transitions, respec-
tively. On increasing the density at constant temperature,
splittings of the susceptibility were also found, but the order-
ing reversal of the susceptibilities was also present.

In conclusion, we note some possible extensions of the
present theory. First, the theory should be extended to polar
molecules. Early results for the uniaxial molecules are given
in f4g. Recently, Mettoutet al. f37g presented a theory of
polar biaxial nematic phases based on the Landau expansion
of the free energy. Second, the more realistic calculations of
the polarizabilities are needed, which will be related to the
data on the molecular structure. Finally, one should consider
also spatially ordered phasesssmectic, crystallined which can
appear instead of the biaxial nematic phase.

APPENDIX A

Below we list the properties of the functionsEmn
s jd . The

functions can be used to describe any physical quantity that
depends on the three Euler angles.

s1d The definition is

Emn
s jd sRd = normsm,nd 3 fDmn

s jd sRd + sgnsmdsgnsnds− 1dm+n

3D−m,−n
s jd sRd + sgnsnds− 1dnDm,−n

s jd sRd + sgnsmd

3s− 1dmD−m,n
s jd sRdg,

where R=sf ,u ,cd sthe three Euler anglesd, j is a non-
negative integer, andm andn are integers. The functionsDmn

s jd

are the standard rotation matrix elementsf35g and

normsx,yd = S 1
Î2

D2+d0x+d0y1

2
fs1 + id + s1 − idsgnsxdsgnsydg,

sgnsxd = H1 for x ù 0,

− 1 for x , 0.
J

Note that

sgns− xd = − sgnsxd + 2d0x.

We have also

H1

2
fs1 + id + s1 − idsgnsmdsgnsndgJ2

= sgnsmdsgnsnd.

s2d The functionsEmn
s jd are real.

s3d For any j the number of the functionsEmn
s jd equals

s2j +1d2 and it is also the number of functionsDmn
s jd .

FIG. 5. The density dependence of the susceptibilities in the
ideal biaxial phasesellipsoids 1:2:5d. r denote the packing factor.
On increasing the density, we observe the ordering reversal of the
susceptibilities fromxx,xy,xz to xx.xy.xz.
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s4d The functions satisfy the orthogonality relation

E dR Emn
s jd sRdErs

skdsRd = d jkdmrdns8p2/s2j + 1d.

We can write more generally

E dR Emn
s jd sRdErs

skdsR1
−1Rd =

8p2

2j + 1
d jkEmr

s jd sR1ddns

1

2
f1

− sgnsmdsgnsnd + sgnsrdsgnsnd

+ sgnsmdsgnsrdg.

s5d The properties connected with the physical system
symmetries are

Emn
s jd
„RRzspd… = s− 1dnEmn

s jd sRd,

Emn
s jd
„RzspdR… = s− 1dmEmn

s jd sRd,

Emn
s jd
„RRyspd… = sgnsnds− 1d jEmn

s jd sRd,

Emn
s jd
„RyspdR… = sgnsmds− 1d jEmn

s jd sRd.

s6d Let R−1=s−c ,−u ,−fd denote the rotation inverse to
R=sf ,u ,cd. Then

Emn
s jd sR−1d = sgnsmdsgnsndEnm

s jd sRd.

s7d For the zero rotationsf=u=c=0d we have

Emn
s jd s0d = dmn.

s8d The connections between the functionsEmn
s jd and the

invariantsFmn
s jd f26g are as follows. Forj , m, n even andm,

nù0

Fmn
s jd = Emn

s jd .

For j odd, m, n even, andm, nù2

Fmn
s jd = E−m−n

s jd .

s9d Let us assume that the three Euler anglesR
=sf ,u ,cd determine the orientation of the three unit or-

thogonal vectorsslW,mW ,nWd. The vector coordinates can be ex-
pressed by means of the functionsEmn

s1d:

lx = E11
s1dsRd = cosu cosf cosc − sinf sinc,

ly = − E−11
s1d sRd = cosu sinf cosc + cosf sinc,

lz = E01
s1dsRd = − sinu cosc,

mx = E1−1
s1d sRd = − cosu cosf sinc − sinf cosc,

my = E−1−1
s1d sRd = − cosu sinf sinc + cosf cosc,

mz = E0−1
s1d sRd = sinu sinc,

nx = E10
s1dsRd = sinu cosf,

ny = − E−10
s1d sRd = sinu sinf,

nz = E00
s1dsRd = cosu.

s10d The integral over the product of threeEmn
s jd has the

form

E dR Em1n1

s j1d sRdEm2n2

s j2d sRdEm3n3

s j3d sRd = 8p2normsm1,n1dnormsm2,n2dnormsm3,n3df1 + sgnsm1dsgnsm2dsgnsm3ds− 1ds j1+j2+j3dg

3 f1 + sgnsn1dsgnsn2dsgnsn3ds− 1ds j1+j2+j3dgFS j1 j2 j3
m1 m2 m3

D + S j1 j2 j3
− m1 m2 m3

D
3s− 1dm1 sgnsm1d + S j1 j2 j3

m1 − m2 m3
Ds− 1dm2 sgnsm2d + S j1 j2 j3

m1 m2 − m3
Ds− 1dm3 sgnsm3dG

3FS j1 j2 j3
n1 n2 n3

D + S j1 j2 j3
− n1 n2 n3

Ds− 1dn1 sgnsn1d + S j1 j2 j3
n1 − n2 n3

Ds− 1dn2 sgnsn2d

+ S j1 j2 j3
n1 n2 − n3

Ds− 1dn3 sgnsn3dG ,

wheres j k l
m n r

d are the 3-j symbols of Wignerf35g. As a special
cases j3=m3=n3=0d, we can obtain the orthogonality equa-
tion.

APPENDIX B

In our approach we assume that a molecule is in the non-
spherical cavity of molecular dimensions and surrounded by

the anisotropic continuum. The cavity shape is taken into
account when we calculate the dependence of the internal
electric field on the macroscopic electric field and on the
polarization. As a result we get different shape factors for
different possible shapes.

s1d The shape factors for the ellipsoids with the axes 2a
32b32c are
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V1 = Js1 − a2/b2,1 −a2/c2d,

V2 = Js1 − b2/a2,1 −b2/c2d,

V3 = Js1 − c2/a2,1 −c2/b2d,

where the functionJsx,yd we define forx,1 andy,1 as

Jsx,yd =E
0

1 dtt2

Îs1 − xt2ds1 − yt2d
.

Generally, the functionJsx,yd can be expressed by means of
the elliptic integrals, but in special casessuniaxial moleculesd
there are simple results. Forw.0 we have

Jsx,yd = Jsy,xd,

Js0,0d =
1

3
,

Jsw2,0d =
1

2w3farcsinswd − wÎ1 − w2g,

Js− w2,0d =
1

2w3fwÎ1 + w2 − lnuw + Î1 + w2ug,

Jsw2,w2d =
1

w3f− w + arctanhswdg,

Js− w2,− w2d =
1

w3fw − arctanswdg.

s2d The shape factors for the rectangular boxes of dimen-
sions 2a32b32c are

V1 =
2

p
arcsinF bc

Îsa2 + b2dsa2 + c2dG ,

V2 =
2

p
arcsinF ac

Îsa2 + b2dsb2 + c2dG ,

V3 =
2

p
arcsinF ab

Îsa2 + c2dsb2 + c2dG .

Note thatV1+V2+V3=1.

APPENDIX C

Let us explain the values of the polarizability tensora.
We considered a simple model of a molecule as a set of
parallel chains of atoms. For a molecule of dimensions 1:2:5
we have two chains, which consist of five atomssor five
chains with two atomsd. One atom consists of the pointlike
positive charge and the spherical cloud of the negative
charge. The relative positions of the positive charges are
fixed whereas the negative charge positions can change. In
the absence of the electric field, the negative charge centers
coincide with the positive charges.

Let us consider a chain ofn atoms. When aweakelectric

field EW is appliedalong the chain, the negative charge centers
do not coincide with the positive charges and dipole mo-
ments are induced. We assume that the positive and negative
charges interact with one another and with the external field.
The chain volumeVchain is the sum of the atom volumes. The
induced polarizability along the chainachain we define as

pW = achaine0EW

and it has the dimension of the volume. We calculated the
total dipole moments and the induced polarizability for dif-
ferent chain lengthsn:

n = 1, achain= 3Vchain,

n = 2, achain= 4Vchain,

n = 3, achain= 4.703 70Vchain,

n = 4, achain= 5.203 46Vchain,

n = 5, achain= 5.567 22Vchain,

n = 6, achain= 5.839 51Vchain,

n = 7, achain= 6.048 90Vchain,

n = 8, achain= 6.213 89Vchain,

n = 9, achain= 6.346 70Vchain. sC1d

The induced polarizability values calculated for the chains
were used as an approximation of the molecule polarizabil-
ities in different directionssVchain was replaced withVmold.
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